Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of boron-doped diamonds using 11B high-resolution NMR at high magnetic fields

Identifieur interne : 000216 ( Russie/Analysis ); précédent : 000215; suivant : 000217

Characterization of boron-doped diamonds using 11B high-resolution NMR at high magnetic fields

Auteurs : RBID : Pascal:08-0522347

Descripteurs français

English descriptors

Abstract

11B static/magic-angle spinning (MAS) NMR experiments are applied to four different B-doped diamond samples prepared by either high-pressure and high-temperature (HPHT) or CVD methods with various starting materials. Application of MAS enhances the spectral resolution appreciably and differences of the four B-doped diamond samples are well reflected in the corresponding MAS spectra. From the comparison among the MAS spectra, and also their dependences on the magnetic-field and the pulse-flip angle, it is suggested that at least four kinds of boron including two kinds of impurities exist in B-doped diamond. We further examine 11B spin-lattice relaxation times (T1) for the four components and find that one of them is extremely short (ca. 500 ms) while others are in the range of several seconds. Relation between the component having the short T1 and the super conducting transition temperature (Tc) value is suggested.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0522347

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Characterization of boron-doped diamonds using
<sup>11</sup>
B high-resolution NMR at high magnetic fields</title>
<author>
<name sortKey="Murakami, M" uniqKey="Murakami M">M. Murakami</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Nafional Institute for Materials Science, 3-13 Sakura</s1>
<s2>Tsukuba, Ibaraki 305-0003</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tsukuba, Ibaraki 305-0003</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shimizu, T" uniqKey="Shimizu T">T. Shimizu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Nafional Institute for Materials Science, 3-13 Sakura</s1>
<s2>Tsukuba, Ibaraki 305-0003</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tsukuba, Ibaraki 305-0003</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>International Center for Materials Nanoarchitectonics, 1-2-1 Sengen</s1>
<s2>Tsukuba, Ibaraki 305-0047</s2>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tsukuba, Ibaraki 305-0047</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tansho, M" uniqKey="Tansho M">M. Tansho</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Nafional Institute for Materials Science, 3-13 Sakura</s1>
<s2>Tsukuba, Ibaraki 305-0003</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tsukuba, Ibaraki 305-0003</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Takano, Y" uniqKey="Takano Y">Y. Takano</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>National Institute for Materials Science. 1-2-1 Sengen</s1>
<s2>Tsukuba, Ibaraki 305-0047</s2>
<s3>JPN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>National Institute for Materials Science. 1-2-1 Sengen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ishii, S" uniqKey="Ishii S">S. Ishii</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>National Institute for Materials Science. 1-2-1 Sengen</s1>
<s2>Tsukuba, Ibaraki 305-0047</s2>
<s3>JPN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>National Institute for Materials Science. 1-2-1 Sengen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ekimov, E A" uniqKey="Ekimov E">E. A. Ekimov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Russian Academy of Science</s1>
<s2>Troitsk 142190 Moscow region</s2>
<s3>RUS</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Russian Academy of Science</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sidorov, V A" uniqKey="Sidorov V">V. A. Sidorov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Russian Academy of Science</s1>
<s2>Troitsk 142190 Moscow region</s2>
<s3>RUS</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Russian Academy of Science</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sumiya, H" uniqKey="Sumiya H">H. Sumiya</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Sumitomo Electric Industries Ltd., 1-1-1 Koyakita</s1>
<s2>Itami, Hyogo 664-0016</s2>
<s3>JPN</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Itami, Hyogo 664-0016</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kawarada, H" uniqKey="Kawarada H">H. Kawarada</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Waseda University, 3-4-1 Ohkubo</s1>
<s2>Shinjuku, Tokyo 169-8555</s2>
<s3>JPN</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Shinjuku, Tokyo 169-8555</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Takegoshi, K" uniqKey="Takegoshi K">K. Takegoshi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="07">
<s1>Kyoto University, Oiwake-cho</s1>
<s2>Kitashirakawa. Kyoto 606-8502</s2>
<s3>JPN</s3>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Kitashirakawa. Kyoto 606-8502</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="08">
<s1>JST, CREST, 4-1-8 Hon-chou</s1>
<s2>Kawaguchi, Saitama, 332-0012</s2>
<s3>JPN</s3>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Kawaguchi, Saitama, 332-0012</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">08-0522347</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0522347 INIST</idno>
<idno type="RBID">Pascal:08-0522347</idno>
<idno type="wicri:Area/Main/Corpus">006015</idno>
<idno type="wicri:Area/Main/Repository">006B44</idno>
<idno type="wicri:Area/Russie/Extraction">000216</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0925-9635</idno>
<title level="j" type="abbreviated">Diam. relat. mater.</title>
<title level="j" type="main">Diamond and related materials</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Boron</term>
<term>Boron 11</term>
<term>Boron additions</term>
<term>CVD</term>
<term>Diamonds</term>
<term>Doped materials</term>
<term>High field</term>
<term>High pressure high temperature method</term>
<term>Indium additions</term>
<term>Magic angle</term>
<term>Mass spectroscopy</term>
<term>Nuclear magnetic resonance</term>
<term>Spin-lattice relaxation</term>
<term>Superconductivity</term>
<term>Transition temperature</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Addition bore</term>
<term>Matériau dopé</term>
<term>Résonance magnétique nucléaire</term>
<term>Champ intense</term>
<term>Angle magique</term>
<term>Bore 11</term>
<term>Méthode haute pression haute température</term>
<term>Dépôt chimique phase vapeur</term>
<term>Spectrométrie masse</term>
<term>Addition indium</term>
<term>Relaxation spin réseau</term>
<term>Température transition</term>
<term>Supraconductivité</term>
<term>Bore</term>
<term>Diamant</term>
<term>8115G</term>
<term>7660E</term>
<term>8105U</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sup>11</sup>
B static/magic-angle spinning (MAS) NMR experiments are applied to four different B-doped diamond samples prepared by either high-pressure and high-temperature (HPHT) or CVD methods with various starting materials. Application of MAS enhances the spectral resolution appreciably and differences of the four B-doped diamond samples are well reflected in the corresponding MAS spectra. From the comparison among the MAS spectra, and also their dependences on the magnetic-field and the pulse-flip angle, it is suggested that at least four kinds of boron including two kinds of impurities exist in B-doped diamond. We further examine
<sup>11</sup>
B spin-lattice relaxation times (T
<sub>1</sub>
) for the four components and find that one of them is extremely short (ca. 500 ms) while others are in the range of several seconds. Relation between the component having the short T
<sub>1</sub>
and the super conducting transition temperature (T
<sub>c</sub>
) value is suggested.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-9635</s0>
</fA01>
<fA03 i2="1">
<s0>Diam. relat. mater.</s0>
</fA03>
<fA05>
<s2>17</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Characterization of boron-doped diamonds using
<sup>11</sup>
B high-resolution NMR at high magnetic fields</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MURAKAMI (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SHIMIZU (T.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TANSHO (M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TAKANO (Y.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ISHII (S.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>EKIMOV (E. A.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>SIDOROV (V. A.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>SUMIYA (H.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>KAWARADA (H.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>TAKEGOSHI (K.)</s1>
</fA11>
<fA14 i1="01">
<s1>Nafional Institute for Materials Science, 3-13 Sakura</s1>
<s2>Tsukuba, Ibaraki 305-0003</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>International Center for Materials Nanoarchitectonics, 1-2-1 Sengen</s1>
<s2>Tsukuba, Ibaraki 305-0047</s2>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>National Institute for Materials Science. 1-2-1 Sengen</s1>
<s2>Tsukuba, Ibaraki 305-0047</s2>
<s3>JPN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Russian Academy of Science</s1>
<s2>Troitsk 142190 Moscow region</s2>
<s3>RUS</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Sumitomo Electric Industries Ltd., 1-1-1 Koyakita</s1>
<s2>Itami, Hyogo 664-0016</s2>
<s3>JPN</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Waseda University, 3-4-1 Ohkubo</s1>
<s2>Shinjuku, Tokyo 169-8555</s2>
<s3>JPN</s3>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>Kyoto University, Oiwake-cho</s1>
<s2>Kitashirakawa. Kyoto 606-8502</s2>
<s3>JPN</s3>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="08">
<s1>JST, CREST, 4-1-8 Hon-chou</s1>
<s2>Kawaguchi, Saitama, 332-0012</s2>
<s3>JPN</s3>
<sZ>10 aut.</sZ>
</fA14>
<fA20>
<s1>1835-1839</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22971</s2>
<s5>354000185853650020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>8 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0522347</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Diamond and related materials</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>
<sup>11</sup>
B static/magic-angle spinning (MAS) NMR experiments are applied to four different B-doped diamond samples prepared by either high-pressure and high-temperature (HPHT) or CVD methods with various starting materials. Application of MAS enhances the spectral resolution appreciably and differences of the four B-doped diamond samples are well reflected in the corresponding MAS spectra. From the comparison among the MAS spectra, and also their dependences on the magnetic-field and the pulse-flip angle, it is suggested that at least four kinds of boron including two kinds of impurities exist in B-doped diamond. We further examine
<sup>11</sup>
B spin-lattice relaxation times (T
<sub>1</sub>
) for the four components and find that one of them is extremely short (ca. 500 ms) while others are in the range of several seconds. Relation between the component having the short T
<sub>1</sub>
and the super conducting transition temperature (T
<sub>c</sub>
) value is suggested.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15G</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70F60E</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A05T</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Addition bore</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Boron additions</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Résonance magnétique nucléaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Nuclear magnetic resonance</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Champ intense</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>High field</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Angle magique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Magic angle</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Bore 11</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Boron 11</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Méthode haute pression haute température</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>High pressure high temperature method</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Método alta presión alta temperatura</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Dépôt chimique phase vapeur</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>CVD</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Spectrométrie masse</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Mass spectroscopy</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Relaxation spin réseau</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Spin-lattice relaxation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Température transition</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Transition temperature</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Supraconductivité</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Superconductivity</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Bore</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Boron</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Diamant</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Diamonds</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>8115G</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>7660E</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>8105U</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>343</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000216 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000216 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:08-0522347
   |texte=   Characterization of boron-doped diamonds using 11B high-resolution NMR at high magnetic fields
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024